Panel Data Estimation and Inference: Homogeneity versus Heterogeneity

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Jiti Gao, Fei Liu, Bin Peng, Yayi Yan

Ngôn ngữ: eng

Ký hiệu phân loại: 005.7 Data in computer systems

Thông tin xuất bản: 2025

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 223568

In this paper, we define an underlying data generating process that allows for different magnitudes of cross-sectional dependence, along with time series autocorrelation. This is achieved via high-dimensional moving average processes of infinite order (HDMA($\infty$)). Our setup and investigation integrates and enhances homogenous and heterogeneous panel data estimation and testing in a unified way. To study HDMA($\infty$), we extend the Beveridge-Nelson decomposition to a high-dimensional time series setting, and derive a complete toolkit set. We exam homogeneity versus heterogeneity using Gaussian approximation, a prevalent technique for establishing uniform inference. For post-testing inference, we derive central limit theorems through Edgeworth expansions for both homogenous and heterogeneous settings. Additionally, we showcase the practical relevance of the established asymptotic properties by revisiting the common correlated effects (CCE) estimators, and a classic nonstationary panel data process. Finally, we verify our theoretical findings via extensive numerical studies using both simulated and real datasets.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH