Type 2 Tobit Sample Selection Models with Bayesian Additive Regression Trees

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Eoghan O'Neill

Ngôn ngữ: eng

Ký hiệu phân loại: 001.434 Experimental method

Thông tin xuất bản: 2025

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 223591

This paper introduces Type 2 Tobit Bayesian Additive Regression Trees (TOBART-2). BART can produce accurate individual-specific treatment effect estimates. However, in practice estimates are often biased by sample selection. We extend the Type 2 Tobit sample selection model to account for nonlinearities and model uncertainty by including sums of trees in both the selection and outcome equations. A Dirichlet Process Mixture distribution for the error terms allows for departure from the assumption of bivariate normally distributed errors. Soft trees and a Dirichlet prior on splitting probabilities improve modeling of smooth and sparse data generating processes. We include a simulation study and an application to the RAND Health Insurance Experiment data set.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH