Quasi maximum likelihood estimation of high-dimensional approximate dynamic matrix factor models via the EM algorithm

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Matteo Barigozzi, Luca Trapin

Ngôn ngữ: eng

Ký hiệu phân loại: 511.4 Approximations formerly also 513.24 and expansions

Thông tin xuất bản: 2025

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 223605

This paper considers an approximate dynamic matrix factor model that accounts for the time series nature of the data by explicitly modelling the time evolution of the factors. We study Quasi Maximum Likelihood estimation of the model parameters based on the Expectation Maximization (EM) algorithm, implemented jointly with the Kalman smoother which gives estimates of the factors. This approach allows to easily handle arbitrary patterns of missing data. We establish the consistency of the estimated loadings and factor matrices as the sample size $T$ and the matrix dimensions $p_1$ and $p_2$ diverge to infinity. The finite sample properties of the estimators are assessed through a large simulation study and an application to a financial dataset of volatility proxies.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH