Estimating Parameters of Structural Models Using Neural Networks

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Zhenling Jiang, Wei, Yanhao

Ngôn ngữ: eng

Ký hiệu phân loại: 006.32 Neural nets (Neural networks)

Thông tin xuất bản: 2025

Mô tả vật lý:

Bộ sưu tập: Báo, Tạp chí

ID: 223612

We study an alternative use of machine learning. We train neural nets to provide the parameter estimate of a given (structural) econometric model, for example, discrete choice or consumer search. Training examples consist of datasets generated by the econometric model under a range of parameter values. The neural net takes the moments of a dataset as input and tries to recognize the parameter value underlying that dataset. Besides the point estimate, the neural net can also output statistical accuracy. This neural net estimator (NNE) tends to limited-information Bayesian posterior as the number of training datasets increases. We apply NNE to a consumer search model. It gives more accurate estimates at lighter computational costs than the prevailing approach. NNE is also robust to redundant moment inputs. In general, NNE offers the most benefits in applications where other estimation approaches require very heavy simulation costs. We provide code at: https://nnehome.github.io.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH