Comment on "Generic machine learning inference on heterogeneous treatment effects in randomized experiments."

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Kosuke Imai, Michael Lingzhi Li

Ngôn ngữ: eng

Ký hiệu phân loại: 001.434 Experimental method

Thông tin xuất bản: 2025

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 223662

Comment: Comment on arXiv:1712.04802We analyze the split-sample robust inference (SSRI) methodology proposed by Chernozhukov, Demirer, Duflo, and Fernandez-Val (CDDF) for quantifying uncertainty in heterogeneous treatment effect estimation. While SSRI effectively accounts for randomness in data splitting, its computational cost can be prohibitive when combined with complex machine learning (ML) models. We present an alternative randomization inference (RI) approach that maintains SSRI's generality without requiring repeated data splitting. By leveraging cross-fitting and design-based inference, RI achieves valid confidence intervals while significantly reducing computational burden. We compare the two methods through simulation, demonstrating that RI retains statistical efficiency while being more practical for large-scale applications.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH