Grounded Persuasive Language Generation for Automated Marketing

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Fei Fang, Simon Mahns, Chaoqi Wang, Jibang Wu, Haifeng Xu, Chenghao Yang, Hao Zhu

Ngôn ngữ: eng

Ký hiệu phân loại: 006.35 *Natural language processing

Thông tin xuất bản: 2025

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 223858

 This paper develops an agentic framework that employs large language models (LLMs) to automate the generation of persuasive and grounded marketing content, using real estate listing descriptions as our focal application domain. Our method is designed to align the generated content with user preferences while highlighting useful factual attributes. This agent consists of three key modules: (1) Grounding Module, mimicking expert human behavior to predict marketable features
  (2) Personalization Module, aligning content with user preferences
  (3) Marketing Module, ensuring factual accuracy and the inclusion of localized features. We conduct systematic human-subject experiments in the domain of real estate marketing, with a focus group of potential house buyers. The results demonstrate that marketing descriptions generated by our approach are preferred over those written by human experts by a clear margin. Our findings suggest a promising LLM-based agentic framework to automate large-scale targeted marketing while ensuring responsible generation using only facts.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH