Economic Causal Inference Based on DML Framework: Python Implementation of Binary and Continuous Treatment Variables

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Shunxin Yao

Ngôn ngữ: eng

Ký hiệu phân loại: 001.434 Experimental method

Thông tin xuất bản: 2025

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 223907

Comment: 10 pages, 5 tables and 2 figuresThis study utilizes a simulated dataset to establish Python code for Double Machine Learning (DML) using Anaconda's Jupyter Notebook and the DML software package from GitHub. The research focuses on causal inference experiments for both binary and continuous treatment variables. The findings reveal that the DML model demonstrates relatively stable performance in calculating the Average Treatment Effect (ATE) and its robustness metrics. However, the study also highlights that the computation of Conditional Average Treatment Effect (CATE) remains a significant challenge for future DML modeling, particularly in the context of continuous treatment variables. This underscores the need for further research and development in this area to enhance the model's applicability and accuracy.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH