FinArena: A Human-Agent Collaboration Framework for Financial Market Analysis and Forecasting

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Ziyang Li, Zhaobin Liu, Congluo Xu

Ngôn ngữ: eng

Ký hiệu phân loại: 303.49 Social forecasts

Thông tin xuất bản: 2025

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 224033

To improve stock trend predictions and support personalized investment decisions, this paper proposes FinArena, a novel Human-Agent collaboration framework. Inspired by the mixture of experts (MoE) approach, FinArena combines multimodal financial data analysis with user interaction. The human module features an interactive interface that captures individual risk preferences, allowing personalized investment strategies. The machine module utilizes a Large Language Model-based (LLM-based) multi-agent system to integrate diverse data sources, such as stock prices, news articles, and financial statements. To address hallucinations in LLMs, FinArena employs the adaptive Retrieval-Augmented Generative (RAG) method for processing unstructured news data. Finally, a universal expert agent makes investment decisions based on the features extracted from multimodal data and investors' individual risk preferences. Extensive experiments show that FinArena surpasses both traditional and state-of-the-art benchmarks in stock trend prediction and yields promising results in trading simulations across various risk profiles. These findings highlight FinArena's potential to enhance investment outcomes by aligning strategic insights with personalized risk considerations.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH