MYB-related (MYBR) proteins play diverse roles in plant growth and development. However, the MYBR genes in Taraxacum kok-saghyz, a promising alternative source of natural rubber, a valuable biopolymer, remain scarcely investigated. Here, a total of 122 MYBR genes, namely TkMYBRs, were identified and classified into the groups of GARP-like, CCA1-like/R-R, and a heterogenous one in T. kok-saghyz. Collinearity analysis revealed a high similarity in MYBRs across two Taraxacum species with contrasting rubber yield. TkMYBR090 showed predominant expression in latex, the cytoplasm of rubber-producing laticifers. Transient overexpression of TkMYBR090 in tobacco and T. kok-saghyz demonstrated its localizations in nucleus and cytoplasm. Yeast two-hybrid assay revealed that the C-terminus of TkMYBR090 possessed transcriptional activation activity. DAP-seq analysis identified 18,232 TkMYBR090-targeted candidate genes, and four significantly enriched TkMYBR090 DNA-binding promoter motifs which were validated by yeast one-hybrid assay. The binding of TkMYBR090 on the promoter of an ascorbate oxidase gene was verified by yeast one-hybrid and dual luciferase activity assays, suggesting a role in ROS metabolism. Such assumption was supported by heterologous expression assays of TkMYBR090 in tobacco and yeast. This study is beneficial to future functional dissection of MYBRs in T. kok-saghyz, especially the roles in development and function of rubber-producing laticifers.