This study presents the development of an innovative injectable bioactive material, BG-ETa, for bone regeneration. Porcine-derived dermal extracellular matrix (dECM) was decellularized and combined with beta-tri calcium phosphate (β-TCP) and porous bio-glass (BG) beads, followed by freeze-drying to produce surface-modified BG beads. Incorporating sodium alginate (SA) enhanced injectability of the system, enabling effective delivery to defect sites. Bio-glass promotes osteogenic support and osteogenesis. dECM, rich in essential proteins and growth factors, mimics the bone microenvironment to improve cell adhesion, proliferation, and differentiation. The bioactive dECM/β-TCP coating on the bead surface offers neovascularization and early mineralization properties which ultimately facilitates new bone formation. In vitro assays demonstrated BG-ETa's biocompatibility, antimicrobial properties, and potential for osteogenic differentiation, with significant results in alkaline phosphatase (ALP) activity, alizarin red staining (ARS), immunocytochemistry (ICC), and gene expression through real-time PCR. In vivo implantation in rabbit femoral defects revealed promising degradation and significant bone regeneration after 4 and 8 weeks, as observed by histological analysis and micro-CT imaging. This injectable BG-ETa system holds promise as an effective alternative to traditional grafts, providing bioactive environment for enhanced bone regeneration with the potential to overcome limitations associated with autologous or allogeneic grafting.