In this paper I analyse the dissent around evidence standards in medicine and pharmacology as a result of distinct ways to address epistemic losses in our game with nature and the scientific ecosystem: an "elitist" and a "pluralist" approach. The former is focused on reliability as minimisation of random and systematic error, and is grounded on a categorical approach to causal assessment, whereas the latter is more focused on the high context-sensitivity of causation in medicine and in the soft sciences in general, and favours probabilistic approaches to scientific inference, as better equipped for defeasibility of causal inference in such domains. I then present a system for probabilistic causal assessment from heterogenous evidence that makes justice of concerns from both positions, while also incorporating "higher order evidence" (evidence/information about the evidence itself) in hypothesis confirmation.