On the numerical approximation of minimax regret rules via fictitious play

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Patrik Guggenberger, Jiaqi Huang

Ngôn ngữ: eng

Ký hiệu phân loại: 511.4 Approximations formerly also 513.24 and expansions

Thông tin xuất bản: 2025

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 225782

Finding numerical approximations to minimax regret treatment rules is of key interest. To do so when potential outcomes are in {0,1} we discretize the action space of nature and apply a variant of Robinson's (1951) algorithm for iterative solutions for finite two-person zero sum games. Our approach avoids the need to evaluate regret of each treatment rule in each iteration. When potential outcomes are in [0,1] we apply the so-called coarsening approach. We consider a policymaker choosing between two treatments after observing data with unequal sample sizes per treatment and the case of testing several innovations against the status quo.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH