New Developments in Statistical Information Theory Based on Entropy and Divergence Measures

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Leandro Pardo

Ngôn ngữ: eng

ISBN-13: 978-3038979364

Ký hiệu phân loại:

Thông tin xuất bản: Basel, Switzerland : MDPI - Multidisciplinary Digital Publishing Institute, 2019

Mô tả vật lý: 1 electronic resource (344 p.)

Bộ sưu tập: Tài liệu truy cập mở

ID: 226714

This book presents new and original research in Statistical Information Theory, based on minimum divergence estimators and test statistics, from a theoretical and applied point of view, for different statistical problems with special emphasis on efficiency and robustness. Divergence statistics, based on maximum likelihood estimators, as well as Wald's statistics, likelihood ratio statistics and Rao's score statistics, share several optimum asymptotic properties, but are highly non-robust in cases of model misspecification under the presence of outlying observations. It is well-known that a small deviation from the underlying assumptions on the model can have drastic effect on the performance of these classical tests. Specifically, this book presents a robust version of the classical Wald statistical test, for testing simple and composite null hypotheses for general parametric models, based on minimum divergence estimators.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 71010608 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH