An Artificial Trend Index for Private Consumption Using Google Trends

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Heidi Alpiste, Jakelin Remón, Arian Segil, Juan Tenorio

Ngôn ngữ: eng

Ký hiệu phân loại: 900.72 History, geography, and auxiliary disciplines

Thông tin xuất bản: 2025

Mô tả vật lý:

Bộ sưu tập: Báo, Tạp chí

ID: 226795

In recent years, the use of databases that analyze trends, sentiments or news to make economic projections or create indicators has gained significant popularity, particularly with the Google Trends platform. This article explores the potential of Google search data to develop a new index that improves economic forecasts, with a particular focus on one of the key components of economic activity: private consumption (64\% of GDP in Peru). By selecting and estimating categorized variables, machine learning techniques are applied, demonstrating that Google data can identify patterns to generate a leading indicator in real time and improve the accuracy of forecasts. Finally, the results show that Google's "Food" and "Tourism" categories significantly reduce projection errors, highlighting the importance of using this information in a segmented manner to improve macroeconomic forecasts.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH