Estimation of Latent Group Structures in Time-Varying Panel Data Models

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Paul Haimerl, Stephan Smeekes, Ines Wilms

Ngôn ngữ: eng

Ký hiệu phân loại: 001.434 Experimental method

Thông tin xuất bản: 2025

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 226833

We introduce a panel data model where coefficients vary both over time and the cross-section. Slope coefficients change smoothly over time and follow a latent group structure, being homogeneous within but heterogeneous across groups. The group structure is identified using a pairwise adaptive group fused-Lasso penalty. The trajectories of time-varying coefficients are estimated via polynomial spline functions. We derive the asymptotic distributions of the penalized and post-selection estimators and show their oracle efficiency. A simulation study demonstrates excellent finite sample properties. An application to the emission intensity of GDP highlights the relevance of addressing cross-sectional heterogeneity and time-variance in empirical settings.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH