Forward Selection Fama-MacBeth Regression with Higher-Order Asset Pricing Factors

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Nicola Borri, Denis Chetverikov, Yukun Liu, Aleh Tsyvinski

Ngôn ngữ: eng

Ký hiệu phân loại: 003.76 Stochastic systems

Thông tin xuất bản: 2025

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 226849

Comment: 67 pagesWe show that the higher-orders and their interactions of the common sparse linear factors can effectively subsume the factor zoo. To this extend, we propose a forward selection Fama-MacBeth procedure as a method to estimate a high-dimensional stochastic discount factor model, isolating the most relevant higher-order factors. Applying this approach to terms derived from six widely used factors (the Fama-French five-factor model and the momentum factor), we show that the resulting higher-order model with only a small number of selected higher-order terms significantly outperforms traditional benchmarks both in-sample and out-of-sample. Moreover, it effectively subsumes a majority of the factors from the extensive factor zoo, suggesting that the pricing power of most zoo factors is attributable to their exposure to higher-order terms of common linear factors.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH