SME Gender-Related Innovation: A Non-Numerical Trend Analysis Using Positive, Zero, and Negative Quantities

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Nina Bočková, Mirko Dohnal, Barbora Volná

Ngôn ngữ: eng

Ký hiệu phân loại: 001.43 Historical, descriptive, experimental methods

Thông tin xuất bản: 2025

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 227083

This paper addresses gender-related aspects of innovation processes in Small and Medium Enterprises (SMEs). Classical analytical and statistical approaches often struggle with the high complexity and insufficient data typical of gender-related innovation studies. We propose a trend-based modelling framework that requires minimal information and uses non-numerical quantifiers: increasing, constant, and decreasing. This approach enables the analysis of ten-dimensional models including variables such as Gender, Product Innovation, Process Innovation, and High-Risk Tolerance. Using trend-based artificial intelligence methods, we identify 13 distinct scenarios and all possible transitions between them. This allows for the evaluation of queries like: Can exports increase while gender parameters remain constant? Two versions of the GASI trend model are presented: the original and an expert-modified version addressing critiques related to scenario transitions. The final model confirms stability and supports the assumption that "no tree grows to heaven." Trend-based modelling offers a practical, interpretable alternative for complex, data-scarce systems.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH