Remote Sensing based Building Extraction

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Mohammad Awrangjeb, Xiangyun Hu, Jiaojiao Tian, Bisheng Yang

Ngôn ngữ: eng

ISBN-13: 978-3039283828

Ký hiệu phân loại:

Thông tin xuất bản: Basel, Switzerland : MDPI - Multidisciplinary Digital Publishing Institute, 2020

Mô tả vật lý: 1 electronic resource (442 p.)

Bộ sưu tập: Tài liệu truy cập mở

ID: 227919

Building extraction from remote sensing data plays an important role in urban planning, disaster management, navigation, updating geographic databases, and several other geospatial applications. Even though significant research has been carried out for more than two decades, the success of automatic building extraction and modeling is still largely impeded by scene complexity, incomplete cue extraction, and sensor dependency of data. Most recently, deep neural networks (DNN) have been widely applied for high classification accuracy in various areas including land-cover and land-use classification. Therefore, intelligent and innovative algorithms are needed for the success of automatic building extraction and modeling. This Special Issue focuses on newly developed methods for classification and feature extraction from remote sensing data for automatic building extraction and 3D
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 71010608 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH