Elevated temperatures and nonoptimal pH can destabilize enzyme structure or change the protonation state of catalytic residues resulting in attenuated catalytic performance. Enzyme immobilization on polymer supports enables the fine-tuning of highly varied vicinal chemistries to improve enzyme performance by promoting correctly folded enzyme structure and adjusting the local microenvironment to more favorable conditions. Herein, we sought to investigate how multicomponent random copolymer brushes composed of monomers with anionic, cationic, neutral (zwitterionic, and mixed-charge), and aromatic properties stabilize covalently tethered lipase A from