Information Bottleneck : Theory and Applications in Deep Learning

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Bernhard Geiger, Gernot Kubin

Ngôn ngữ: eng

ISBN-13: 978-3036508023

Ký hiệu phân loại:

Thông tin xuất bản: Basel, Switzerland : MDPI - Multidisciplinary Digital Publishing Institute, 2021

Mô tả vật lý: 1 electronic resource (274 p.)

Bộ sưu tập: Tài liệu truy cập mở

ID: 230337

 The celebrated information bottleneck (IB) principle of Tishby et al. has recently enjoyed renewed attention due to its application in the area of deep learning. This collection investigates the IB principle in this new context. The individual chapters in this collection: • provide novel insights into the functional properties of the IB
  • discuss the IB principle (and its derivates) as an objective for training multi-layer machine learning structures such as neural networks and decision trees
  and • offer a new perspective on neural network learning via the lens of the IB framework. Our collection thus contributes to a better understanding of the IB principle specifically for deep learning and, more generally, of information-theoretic cost functions in machine learning. This paves the way toward explainable artificial intelligence.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 71010608 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH