Zinc-ion batteries have demonstrated promising potential for future energy storage, whereas drawbacks, including dendrite growth, hydrogen evolution reaction, and localized deposition, heavily hinder their development for practical applications. Herein, unlike elaborated structural design and electrolyte excogitation, we introduce an effective parts-per-million (ppm)-scale electrolyte additive, phosphonoglycolic acid (PPGA), to overcome the intrinsic issues of zinc negative electrode in mild acidic aqueous electrolytes. Profiting from absorbed PPGA on zinc surface and its beneficial interaction with hydrogen bonds of adjacent water molecules, stable symmetric stripping/plating of zinc in aqueous ZnSO