STANCE: a unified statistical model to detect cell-type-specific spatially variable genes in spatial transcriptomics.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Bin Chen, Yuehua Cui, Haohao Su, Yuesong Wu

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: England : Nature communications , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 232400

One of the major challenges in spatial transcriptomics is to detect spatially variable genes (SVGs), whose expression patterns are non-random across tissue locations. Many SVGs correlate with cell type compositions, introducing the concept of cell type-specific SVGs (ctSVGs). Existing ctSVG detection methods treat cell type-specific spatial effects as fixed effects, leading to tissue spatial rotation-dependent results. Moreover, SVGs may exhibit random spatial patterns within cell types, meaning an SVG is not always a ctSVG, and vice versa, further complicating detection. We propose STANCE, a unified statistical model for both SVGs and ctSVGs detection under a linear mixed-effect model framework that integrates gene expression, spatial location, and cell type composition information. STANCE ensures tissue rotation-invariant results, with a two-stage approach: initial SVG/ctSVG detection followed by ctSVG-specific testing. We demonstrate its performance through extensive simulations and analyses of public datasets. Downstream analyses reveal STANCE's potential in spatial transcriptomics analysis.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH