Seed development, which depends on parent plants genetic background and mother plant environmental conditions, is a major component determining seed composition. Seed quality is a main agricultural concern, impacting both food and non-food applications, while also playing a central role in biodiversity conservation and environment protection. Climate change, in particular the emergence of extremely high temperatures, constitute a critical global threat to agriculture. Specialized metabolites (SMs) play crucial roles in the interactions of plants and seeds with their environments. Several SMs are known to be protective compounds involved in seed stress responses, thus impacting their quality. In this study, we performed untargeted metabolomic (LC-MS/MS) and transcriptomic (RNA-Seq) analyses of Arabidopsis thaliana seeds harvested at six developmental stages (Globular, Transition, Torpedo, Bent cotyledon, Mature green and Dry seed), and developed under control and warm temperature conditions. Those data provide an original and valuable resource that could be used to identify SMs and genes involved in seed heat stress responses and for the study of their regulation and functions during seed development.