The effective use of CRISPR technologies in emerging model organisms faces significant challenges in efficiently generating heritable mutations and in understanding the genomic consequences of induced DNA damages and the inheritance patterns of induced mutations. This study addresses these issues by 1) developing an efficient microinjection delivery method for gene editing in the microcrustacean Daphnia pulex
2) assessing the editing dynamics of Cas9 and Cas12a nucleases in the scarlet knock-out mutants
and 3) investigating the transcriptomes of scarlet mutants to understand the pleiotropic effects of scarlet gene. Our reengineered microinjection method results in efficient biallelic editing with both nucleases. Our data suggest site-specific DNA cleavage mostly occurs in a stepwise fashion. Indels dominate the induced mutations. A few, unexpected on-site large deletions (>
1 kb) are also observed. Notably, genome-wide analyses reveal no off-target mutations. Knock-in of a stop codon cassette to the scarlet locus was successful, despite complex induced mutations surrounding the target site. Moreover, extensive germline mosaicism exists in some mutants, which unexpectedly produce different phenotypes/genotypes in their asexual progeny. Lastly, our transcriptomic analyses unveil significant gene expression changes associated with scarlet knock-out and altered swimming behavior in mutants, including several genes involved in human neurodegenerative diseases.