6:2 fluorotelomer sulfonate as a safer alternative to PFOS: Comparative cytotoxicity and oxidative stress mechanisms in pancreatic β-cells (INS-1 model).

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Huan He, Bin Huang, Xuejun Pan, Xiao-Min Ren, Jianying Wang, Zhixiang Xu, Zhongneng Yang, Pingping Zhang, Zhenghuan Zhang, Fenqing Zhao

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: England : Toxicology in vitro : an international journal published in association with BIBRA , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 233406

 Previous studies suggest that 6:2 fluorotelomer sulfonate (6:2 FTSA) exhibits lower hepatotoxicity and reduced reproductive and developmental toxicity compared to perfluorooctane sulfonate (PFOS), indicating it may offer a safer alternative. This study aimed to investigate whether 6:2 FTSA is safer than PFOS in terms of its cytotoxic effects on pancreatic β-cells. Using rat insulinoma cells (INS-1) as a model of pancreatic β-cells, we compared the effects of 6:2 FTSA and PFOS in both their acid (6:2 FTSA-H, PFOS-H) and potassium salt forms (6:2 FTSA-K, PFOS-K) on cell viability through Cell Counting Kit-8 (CCK-8) assays, Trypan Blue staining, and apoptosis assays. Results indicated that 6:2 FTSA was less toxic to INS-1 cells than PFOS (6:2 FTSA-H <
  PFOS-H
  6:2 FTSA-K <
  PFOS-K), the LOECs of 6:2 FTSA-H, 6:2 FTSA-K, PFOS-H, and PFOS-K were 150 μM, 150 μM, 20 μM, and 10 μM under FBS free conditions, respectively. To further explore whether these compounds induce cell death via oxidative stress, we measured intracellular reactive oxygen species (ROS) levels, superoxide dismutase (SOD) activity, and malondialdehyde (MDA) levels. All four compounds induced oxidative stress in INS-1 cells, with oxidative stress levels corresponding to cytotoxicity, suggesting β-cell death may occur via an oxidative stress mechanism. In conclusion, this study supports the notion that 6:2 FTSA is a safer alternative to PFOS, particularly regarding risks related to pancreatic β-cell cytotoxic effects. While the in vitro experiments in this study provide valuable preliminary information on the compounds' effects on cells and their mechanisms, they cannot fully capture the complexity of the in vivo environment. Therefore, future research should include in vivo experiments to validate the findings from the in vitro studies and comprehensively evaluate the actual effects of the compounds in living organisms.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH