Blockchain driven medical image encryption employing chaotic tent map in cloud computing.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Manal Elzain Mohamed Abdalla, Mahwish Bano, Saba Inam, Shamsa Kanwal, Usman Shahid, Zaffar Ahmed Shaikh

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: England : Scientific reports , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 233458

Data security during transmission over public networks has become a key concern in an era of rapid digitization. Image data is especially vulnerable since it can be stored or transferred using public cloud services, making it open to illegal access, breaches, and eavesdropping. This work suggests a novel way to integrate blockchain technology with a Chaotic Tent map encryption scheme in order to overcome these issues. The outcome is a Blockchain driven Chaotic Tent Map Encryption Scheme (BCTMES) for secure picture transactions. The idea behind this strategy is to ensure an extra degree of security by fusing the distributed and immutable properties of blockchain technology with the intricate encryption offered by chaotic maps. To ensure that the image is transformed into a cipher form that is resistant to several types of attacks, the proposed BCTMES first encrypts it using the Chaotic Tent map encryption technique. The accompanying signed document is safely kept on the blockchain, and this encrypted image is subsequently uploaded to the cloud. The integrity and authenticity of the image are confirmed upon retrieval by utilizing blockchain's consensus mechanism, adding another layer of security against manipulation. Comprehensive performance evaluations show that BCTMES provides notable enhancements in important security parameters, such as entropy, correlation coefficient, key sensitivity, peak signal-to-noise ratio (PSNR), unified average changing intensity (UACI), and number of pixels change rate (NPCR). In addition to providing good defense against brute-force attacks, the high key size of [Formula: see text] further strengthens the system's resilience. To sum up, the BCTMES effectively addresses a number of prevalent risks to picture security and offers a complete solution that may be implemented in cloud-based settings where data integrity and privacy are crucial. This work suggests a promising path for further investigation and practical uses in secure image transmission.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH