Hybrid machine learning framework for predictive maintenance and anomaly detection in lithium-ion batteries using enhanced random forest.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Mohit Bajaj, V S Chandrika, R Seshu Kumar, P Lakshmi Narayana, Arvind R Singh, Ievgen Zaitsev

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: England : Scientific reports , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 233792

The critical necessity for sophisticated predictive maintenance solutions to optimize performance and extend lifespan is underscored by the widespread adoption of lithium-ion batteries across industries, including electric vehicles and energy storage systems. This study introduces a comprehensive predictive maintenance framework that incorporates real-time health diagnostics with state-of-charge (SOC) estimation, utilizing an Improved Random Forest (IRF) algorithm to address the current limitations in battery management systems. The framework integrates physics-informed methodologies with data-driven machine learning models to facilitate the dynamic assessment of battery health and the production of precise predictions. This is achieved by analysing features such as SOC, energy efficiency, and capacity decline. The IRF algorithm outperforms state-of-the-art methods such as Gradient Boosting and standard Random Forest, obtaining the lowest Root Mean Square Error of 1.575 and a R
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH