A growing body of evidence suggests that nuclear bodies, condensates of RNAs and proteins within the nucleus, are assembled through liquid-liquid phase separation. Some nuclear bodies, such as paraspeckles, are scaffolded by a class of RNAs known as architectural RNAs. From a materials science perspective, RNAs are categorized as polymers, which have been extensively studied in soft matter physics. While soft matter physics has the potential to provide significant insights, it is not directly applicable because transcription and other biochemical processes differentiate RNAs from other polymers studied in this field. Therefore, an interdisciplinary research fusing molecular biology and soft matter physics offers a powerful approach to studying nuclear bodies. This review introduces the biophysical insights provided by such interdisciplinary research in the assembly and regulation of nuclear bodies.