Self-assembly of hard platelet colloids into liquid crystalline phases is typically driven by entropy, making them less sensitive to temperature changes. However, soft interaction potentials often exist in real colloidal systems, which can lead to temperature-sensitive phase transitions. Despite significant progress in understanding phase behavior in the past 2 decades, studies on temperature-dependent phase behavior remain rare, and there is limited knowledge about how soft interactions influence phase transitions upon temperature changes. In this work, we investigated a platelet colloid system in isotropic and nematic phases using small- and wide-angle X-ray scattering techniques (SAXS/WAXS) and polarized optical microscopy (POM). The system consisted of polystyrene-