Apomixis - clonal seed production in plants - is a rare yet phylogenetically widespread trait that has recurrently evolved in plants to fix hybrid genotypes over generations. Apomixis is absent from major crop species and has been seen as a holy grail of plant breeding due to its potential to propagate hybrid vigor in perpetuity. Here we exhaustively review recent progress, bottlenecks, and potential in the individual components of gametophytic apomixis (avoidance of meiosis, skipping fertilization by parthenogenesis, autonomous endosperm development), and sporophytic apomixis. The Mitosis instead of Meiosis system has now been successfully set up in three species (Arabidopsis, rice, and tomato), yet significant hurdles remain for universal bioengineering of clonal gametes. Parthenogenesis has been engineered in even more species, yet incomplete penetrance still remains an issue
we discuss the choice of parthenogenesis genes (BABY BOOM, PARTHENOGENESIS, WUSCHEL) and also how to drive egg cell-specific expression. The identification of pathways to engineer autonomous endosperm development would allow fully autonomous seed production, yet here significant challenges remain. The recent achievements in the engineering of synthetic apomixis in rice at high penetrance show great potential and the remaining obstacles toward implementation in this crop are addressed. Overall, the recent practical examples of synthetic apomixis suggest the field is flourishing and implementation in agricultural systems could soon take place.