Wearable electronics require stretchable displays that can withstand large and repeated mechanical deformation without failure. Intrinsically stretchable organic light-emitting diodes (ISOLEDs) that operate under DC voltage provide promising candidates for wearable display applications. However, the lack of sophisticated stretchable materials and processing techniques suitable for ISOLEDs results in a significant deficit in the efficiency of state-of-the-art ISOLEDs compared to industrial standards. The design of stretchable conducting and semiconducting materials poses a significant challenge because of trade-off relationships between stretchability and properties such as conductivity and charge carrier mobility. To increase the efficiency of ISOLEDs to meet industrial standards, strategies to overcome these trade-offs must be developed. This perspective discusses recent progress and challenges in designing stretchable electrodes, light-emitting materials, transport materials, and potential applications of ISOLEDs. It provides a useful guide in this field to develop efficient ISOLEDs for system-level integration.