Metastable Calcium Phosphate Cluster-Involved Mineralization Process Regulated by a Dual Biomolecule System Toward the Application in Dentinal Tubules Occlusion.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Feng Chen, Xi Chen, Xiaohao Liu, Bing-Qiang Lu, Nan Luo, Jing Ru, Shuo Tan, Xiaochen Xu, Hua Zeng

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: Germany : Advanced healthcare materials , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 239290

 Dentin hypersensitivity caused by the exposure of dentinal tubules is affecting a significant portion of the population. With promising prospects, the biomimetic mineralization materials used in treating dentin hypersensitivity are expected to possess a metastable characteristic, for which they can easily penetrate the tubules and the surrounding tissues, but then occlude them via a transformation of size and phase immediately. Herein, this study develops a metastable calcium phosphate cluster (MCPC)-involved mineralization process, which is regulated by dual biological macromolecules: bovine serum albumin (BSA) and poly-L-lysine (PLL). BSA functions to stabilize the primary calcium phosphate clusters
  PLL further tunes the cluster's evolution (toward larger and crystalline particles) into a metastable fashion, and meanwhile inhibits the local bacteria. Upon treatments, the system generates amorphous MCPC with ultrasmall size (1-2 nm)
  then they enter the deep dentinal tubules, subsequently aggregate and crystalline into immobile larger particles, which finally seal the exposed dentinal tubules. The effective occlusion of dentinal tubules as well as significant antibacterial performance are confirmed both in vivo and in vitro. This study has devised not only a regulatory approach for the evolution of mineralization-active clusters but also established an efficient method for managing dentin hypersensitivity.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH