Redox-active porous organic polymers (POPs) have emerged as promising and sustainable organic cathode materials (OCMs) for lithium-ion batteries (LIBs). However, their performance is significantly limited by insufficient redox-active sites and low intrinsic conductivity. Herein, a series of novel arylamine-linked and bipolar POPs (denoted as HATN-AQ, HATN-BQ, HATN-CBD, and HATN-PTO) are designed and prepared as OCMs for LIBs. Benefiting from their high density of redox-active sites, bipolar feature, and arylamine linkage, these POPs exhibited high capacity, high rate, and excellent long-term cycling stability. Among them, HATN-PTO displayed an ultrahigh reversible capacity of 329.6 mAh g