Auditing the clinical usage of deep-learning based organ-at-risk auto-segmentation in radiotherapy.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Meagan de la Bastide, Jack Doherty, Josh Mason, Ruth McLauchlan, Jack Miskell, Sarah Robinson

Ngôn ngữ: eng

Ký hiệu phân loại: 271.6 *Passionists and Redemptorists

Thông tin xuất bản: Netherlands : Physics and imaging in radiation oncology , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 239691

For 18 months following clinical introduction of deep-learning auto-segmentation (DLAS), an audit of organ at risk (OAR) contour editing was performed, including 1255 patients from a single institution and the majority of tumour sites. Mean surface-Dice similarity coefficient increased from 0.87 to 0.97, the number of unedited OARs increased from 21.5 % to 40 %. The audit identified changes in editing corresponding to vendor model changes, adaption of local contouring practice and reduced editing in areas of no clinical significance. The audit allowed assessment of the level and frequency of editing and identification of outlier cases.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH