Chapter Topological Characterization and Advanced Noise-Filtering Techniques for Phase Unwrapping of Interferometric Data Stacks

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Pasquale Imperatore, Antonio Pepe

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: InTechOpen, 2016

Mô tả vật lý:

Bộ sưu tập: Tài liệu truy cập mở

ID: 241885

Semiconductor optical amplifiers (SOAs) have been extensively used in a wealth of telecom and datacom applications as a powerful building block that features large optical gain, all-optical gating function, fast response, and ease of integration with other functional semiconductor devices. As fabrication technologies are steadily maturing toward enhanced yield, SOAs are foreseen to play a pivotal role in complex photonics integrated circuits (PICs) of the near future. From a design standpoint, accurate numerical modeling of SOA devices is required toward optimizing PICs response from a system perspective, while enhanced circuit complexity calls for efficient solvers. In this book chapter, we present established experimentally validated SOA numerical modeling techniques and a gain parameterization procedure applicable to a wide range of SOA devices. Moreover, we describe multigrid concepts and implicit schemes that have been only recently presented to SOA modeling, enabling adaptive time stepping at the SOA output, with dense sampling at transient phenomena during the gain recovery and scarce sampling during the steady-state response. Overall, a holistic simulation methodology approach along with recent research trends are described, aiming to form the basis of further developments in SOA modeling.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 71010608 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH