Machine Learning Guided Outlook of Global Food Insecurity Consistent with Macroeconomic Forecasts

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Bo Pieter Johannes Andree

Ngôn ngữ: eng

Ký hiệu phân loại: 006.31 Machine learning

Thông tin xuất bản: World Bank, Washington, DC, 2022

Mô tả vật lý:

Bộ sưu tập: Tài liệu truy cập mở

ID: 246099

Motivated by the deterioration in global food security conditions, this paper develops a parsimonious machine learning model to derive a multi-year outlook of global severe food insecurity from macro-economic projections. The objective is to provide forecasts that are internally consistent with wider economic assessments, allowing both food security policies and economic development policies to be informed by a cohesive set of expectations. The model is validated on holdout data that explicitly test the ability to forecast new data from history and extrapolate beyond observed intervals. It is then applied to the World Economic Outlook database of April 2022 to project the severely food insecure population across all 144 World Bank lending countries. The analysis estimates that the global severely food insecure population may remain above 1 billion through 2027 unless large-scale interventions are made. The paper also explores counterfactual scenarios, first to investigate additional risks in a downside economic scenario, and second, to investigate whether restoring macroeconomic targets is sufficient to revert food insecurity back to pre-pandemic levels. The paper concludes that the proposed model provides a robust and low-cost approach to maintain reliable long-term projections and produce scenario analyses that can be revised systematically and interpreted within the context of available economic outlooks.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH