RANK OF THE DERIVATIVE OF THE PROJECTION TO SYMMETRIZED POLYDISC=RANK OF THE DERIVATIVE OF THE PROJECTION TO SYMMETRIZED POLYDISC

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Duc Anh Tran

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: Tạp chí Khoa học - Trường Đại học Sư phạm Hà Nội: Khoa học Tự nhiên, 2024

Mô tả vật lý: tr.17

Bộ sưu tập: Báo, Tạp chí

ID: 248563

The projection, also called the symmetrization mapping, from spectralball to symmetrized polydisc is closely related to the spectral Nevanlinna-Pickinterpolation problem. We prove that the rank of the derivative of the projectionfrom the spectral unit ball to the symmetrized polydisc is equal to the degree ofthe minimal polynomial of the matrix at which we take the derivative. Therefore,it explains why the corresponding lifting problem is easier when the matrixbase-point is cyclic since it is a regular point of the symmetrization mapping inthe differential sense.The projection, also called the symmetrization mapping, from spectralball to symmetrized polydisc is closely related to the spectral Nevanlinna-Pickinterpolation problem. We prove that the rank of the derivative of the projectionfrom the spectral unit ball to the symmetrized polydisc is equal to the degree ofthe minimal polynomial of the matrix at which we take the derivative. Therefore,it explains why the corresponding lifting problem is easier when the matrixbase-point is cyclic since it is a regular point of the symmetrization mapping inthe differential sense.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH