The mixture of data in real-life exhibits structure or connection property in nature. Typical data include biological data, communication network data, image data, etc. Graphs provide a natural way to represent and analyze these types of data and their relationships. Unfortunately, the related algorithms usually suffer from high computational complexity, since some of these problems are NP-hard. Therefore, in recent years, many graph models and optimization algorithms have been proposed to achieve a better balance between efficacy and efficiency. This book contains some papers reporting recent achievements regarding graph models, algorithms, and applications to problems in the real world, with some focus on optimization and computational complexity.