NPI-HGNN: A Heterogeneous Graph Neural Network-Based Approach for Predicting ncRNA-Protein Interactions.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Yu Jiang, Quanzhong Liu, Haofeng Ma, Sizhe Wang, Hao Wu, Xin Zhang

Ngôn ngữ: eng

Ký hiệu phân loại: 271.6 *Passionists and Redemptorists

Thông tin xuất bản: Germany : Interdisciplinary sciences, computational life sciences , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 249756

Accurate identification of ncRNA-protein interactions (NPIs) is critical for understanding various cellular activities and biological functions of ncRNAs and proteins. Many sequence- and/or structure- and graph-based computational approaches have been developed to identify NPIs from large-scale ncRNA and protein data in a high-throughput manner. However, many sequence- and/or structure- and graph-based computational approaches often ignore either the topological information in NPIs or the influence of other molecule networks on NPI prediction. In this work, we propose NPI-HGNN, an end-to-end graph neural network (GNN)-based approach for the identification of NPIs from a large heterogeneous network, consisting of the ncRNA-protein interaction network, the ncRNA-ncRNA similarity network, and the protein-protein interaction network. To our knowledge, NPI-HGNN is the first GNN-based predictor that integrates related heterogeneous networks for NPI prediction. Experiments on five benchmarking datasets demonstrate that NPI-HGNN outperformed several state-of-the-art sequence- and/or structure- and graph-based predictors. In addition, we showcased the prediction power of NPI-HGNN by identifying 12 interacting ncRNAs of the pre-mRNA 3' end processing protein, which indicates the effectiveness of the proposed model. The source code of NPI-HGNN is freely available for academic purposes at https://github.com/zhangxin11111/NPI-HGNN .
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH