Divergence Measures : Mathematical Foundations and Applications in Information-Theoretic and Statistical Problems

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Igal Sason

Ngôn ngữ: eng

ISBN-13: 978-3036543314

Ký hiệu phân loại:

Thông tin xuất bản: Basel : MDPI - Multidisciplinary Digital Publishing Institute, 2022

Mô tả vật lý: 1 electronic resource (256 p.)

Bộ sưu tập: Tài liệu truy cập mở

ID: 250027

Data science, information theory, probability theory, statistical learning and other related disciplines greatly benefit from non-negative measures of dissimilarity between pairs of probability measures. These are known as divergence measures, and exploring their mathematical foundations and diverse applications is of significant interest. The present Special Issue, entitled "Divergence Measures: Mathematical Foundations and Applications in Information-Theoretic and Statistical Problems", includes eight original contributions, and it is focused on the study of the mathematical properties and applications of classical and generalized divergence measures from an information-theoretic perspective. It mainly deals with two key generalizations of the relative entropy: namely, the R_ényi divergence and the important class of f -divergences. It is our hope that the readers will find interest in this Special Issue, which will stimulate further research in the study of the mathematical foundations and applications of divergence measures.
1. 
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 71010608 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH