Machine Learning Methods with Noisy, Incomplete or Small Datasets

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Cesar F Caiafa, Pere Marti-Puig, Jordi Solé-Casals, Zhe Sun, Toshihisa Tanaka

Ngôn ngữ: eng

ISBN-13: 978-3036512877

Ký hiệu phân loại:

Thông tin xuất bản: Basel, Switzerland : MDPI - Multidisciplinary Digital Publishing Institute, 2021

Mô tả vật lý: 1 electronic resource (316 p.)

Bộ sưu tập: Tài liệu truy cập mở

ID: 251020

In many machine learning applications, available datasets are sometimes incomplete, noisy or affected by artifacts. In supervised scenarios, it could happen that label information has low quality, which might include unbalanced training sets, noisy labels and other problems. Moreover, in practice, it is very common that available data samples are not enough to derive useful supervised or unsupervised classifiers. All these issues are commonly referred to as the low-quality data problem. This book collects novel contributions on machine learning methods for low-quality datasets, to contribute to the dissemination of new ideas to solve this challenging problem, and to provide clear examples of application in real scenarios.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 71010608 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH