AI-driven antibody design with generative diffusion models: current insights and future directions.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Si-Han Gao, Xin-Heng He, Jun-Rui Li, Hong Shan, Shi-Yi Shen, H Eric Xu, James Xu

Ngôn ngữ: eng

Ký hiệu phân loại: 324.2969 Political parties

Thông tin xuất bản: United States : Acta pharmacologica Sinica , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 251396

Therapeutic antibodies are at the forefront of biotherapeutics, valued for their high target specificity and binding affinity. Despite their potential, optimizing antibodies for superior efficacy presents significant challenges in both monetary and time costs. Recent strides in computational and artificial intelligence (AI), especially generative diffusion models, have begun to address these challenges, offering novel approaches for antibody design. This review delves into specific diffusion-based generative methodologies tailored for antibody design tasks, de novo antibody design, and optimization of complementarity-determining region (CDR) loops, along with their evaluation metrics. We aim to provide an exhaustive overview of this burgeoning field, making it an essential resource for leveraging diffusion-based generative models in antibody design endeavors.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH