GABAergic network activity plays a crucial role in a wide array of physiological processes and is implicated in various pathological conditions. While extensive research has been conducted on how GABAergic network activity modulates both excitatory and inhibitory synaptic transmission in the CA1 region, the mechanisms by which it influences synaptic transmission in the entorhinal cortex-dentate gyrus (EC-DG) circuits are still largely unexplored. Using a combination of whole-cell patch-clamp recordings, optogenetics, immunohistochemistry, and behavioral assays, we demonstrate that activation of GABA transporter 3 (GAT-3) in astrocytes triggers an increase in intracellular Ca