Combination of deep learning reconstruction and quantification for dynamic contrast-enhanced (DCE) MRI.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Ouri Cohen, Juntong Jing, Anthony Mekhanik, Victor Murray, Ricardo Otazo, Melanie Schellenberg

Ngôn ngữ: eng

Ký hiệu phân loại: 304.25 Climatic and weather factors

Thông tin xuất bản: Netherlands : Magnetic resonance imaging , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 253059

Dynamic contrast-enhanced (DCE) MRI is an important imaging tool for evaluating tumor vascularity that can lead to improved characterization of tumor extent and heterogeneity, and for early assessment of treatment response. However, clinical adoption of quantitative DCE-MRI remains limited due to challenges in acquisition and quantification performance, and lack of automated tools. This study presents an end-to-end deep learning pipeline that exploits a novel deep reconstruction network called DCE-Movienet with a previously developed deep quantification network called DCE-Qnet for fast and quantitative DCE-MRI. DCE-Movienet offers rapid reconstruction of high spatiotemporal resolution 4D MRI data, reducing reconstruction time of the full acquisition to only 0.66 s, which is significantly shorter than compressed sensing's order of 10 min-long reconstructions, without affecting image quality. DCE-Qnet can then perform comprehensive quantification of perfusion parameter maps (K
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH