BACKGROUND: Cardiomyocyte oxidative stress significantly contributes to the progression of hypertension-induced heart failure, highlighting the need for targeted therapies. We developed a novel peptide, NPA7, that coactivates the GC-A (guanylyl cyclase A)/cGMP and MasR (Mas receptor)/cAMP pathway. This study aimed to test NPA7's ability to inhibit oxidative stress by modulating the p62 (Sequestosome 1)-KEAP1 (Kelch-like ECH-associated protein 1)-NRF2 (nuclear factor erythroid 2-related factor 2) pathway in human cardiomyocytes (HCMs) and a rat model of hypertension. METHODS: Oxidative stress was induced in HCMs using H RESULTS: NPA7 reduced H CONCLUSIONS: NPA7 exhibits antioxidant properties in HCMs and spontaneously hypertensive rat hearts by targeting GC-A and MasR through the p62-KEAP1-NRF2 pathway, supporting a novel therapeutic approach against cardiovascular disease-related oxidative stress.