In this study, polyethylene glycol 200 (PEG200) was employed as hydrogen bond acceptor, while organic acids served as hydrogen bond donors, to formulate poly-deep eutectic solvents (PDESs), which were utilized to pretreat tea stem. Specially, combining PEG200 and oxalic acid (OA) exhibited a notably high cellulose retention (82.03 %) and most efficient hemicellulose (97.02 %) and lignin removal (70.89 %). The removal of amorphous lignin enhanced the crystallinity of the residues and improved the conversion efficiency of cellulose into levulinic acid. Additionally, the structural alterations in lignin samples were analyzed in comparison to milled wood lignin (MWL). The PEG200-OA system facilitated the cleavage of β-O-4 and β-5 linkages and resulted in the degradation of S-type lignin, accompanied by increased condensation of G units. The resulting lignin displayed a reduced molecular weight (Mw of 1283 g/mol, Mn value 531 g/mol) and nanoscale particle size (D