During batch fermentation, a variety of compounds are synthesized, as microorganisms undergo distinct growth phases: lag, exponential, growth-no-growth transition, stationary, and decay. A detailed understanding of the metabolic pathways involved in these phases is crucial for optimizing the production of target compounds. Dynamic flux balance analysis (dFBA) offers insight into the dynamics of metabolic pathways. However, explaining secondary metabolism remains a challenge. A multiphase and multi-objective dFBA scheme (MPMO model) has been proposed for this purpose. However, its formulation is discontinuous, changing from phase to phase
its accuracy in predicting intracellular fluxes is hampered by the lack of a mechanistic link between phases
and its simulation requires considerable computational effort. To address these limitations, we combine a novel model with a genome-scale model to predict the distribution of intracellular fluxes throughout batch fermentation. This integrated multiphase continuous model (IMC) has a unique formulation over time, and it incorporates empirical regulatory descriptions to automatically identify phase transitions and incorporates the hypotheses that yeasts might vary their cellular objective over time to adapt to the changing environment. We validated the predictive capacity of the IMC model by comparing its predictions with intracellular metabolomics data for