The purpose of this study was to investigate the predictive value of mitochondrial oxidative stress-related LncRNA in cancer prognosis and immunotherapy response, and to further analyze the molecular structure of ribosomal protein L34 and its interaction mechanism with the protein. We screened lncrnas associated with mitochondrial oxidative stress, evaluated their expression patterns in different cancer types, and analyzed the three-dimensional structure of ribosomal protein L34 and its interaction network with other proteins. In this study, public databases were used to screen out lncrnas associated with mitochondrial oxidative stress. Bioinformatic analysis, including gene expression profile analysis, survival analysis and functional enrichment analysis, was used to evaluate the expression patterns of these lncrnas in different cancer types and their relationship with prognosis. The interacting proteins of ribosomal protein L34 were identified by proteomic techniques. The three-dimensional structure of ribosomal protein L34 and its binding mode with interacting proteins were studied by molecular docking and dynamic simulation methods. The results showed that the screened lncrnas showed significant expression differences in multiple cancer types and were closely related to the survival rate of patients. The three-dimensional structure of ribosomal protein L34 reveals key amino acid residues and binding sites for its interactions with specific proteins. Functional enrichment analysis showed that these lncrnas may affect the development of cancer through regulating oxidative stress response, cell cycle and apoptosis. The interaction network of ribosomal protein L34 reveals its central role in protein synthesis and cellular stress response.