Flow visualisation in real-size optical injectors of conventional, additised, and renewable gasoline blends [electronic resource]

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả:

Ngôn ngữ: eng

Ký hiệu phân loại: 621.31 Generation, modification, storage, transmission of electric power

Thông tin xuất bản: Washington, D.C. : Oak Ridge, Tenn. : United States. National Nuclear Security Administration ; Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2021

Mô tả vật lý: Size: Article No. 115109 : , digital, PDF file.

Bộ sưu tập: Metadata

ID: 255567

Research on renewable and alternative fuels is crucial for improving the energy and environmental efficiency of modern gasoline internal combustion engines. To highlight the influence of fuel rheological and thermodynamic properties on phase change and atomisation processes, three types of gasoline blends were tested. More specifically, the campaign comprised a reference gasoline, an ethanol/gasoline blend (10% v/v) representative of renewable fuels, and an additised gasoline sample treated with viscoelasticity-inducing agents. High-speed imaging of the transient two-phase flow field arising in the internal geometry and the near-nozzle spray region of gasoline injectors was performed employing Diffuse Backlight Illumination. The metallic body of a commercial injector was modified to fit transparent tips realising two nozzle layouts, namely a two-hole real size model resembling the Engine Combustion Network spray G injector and an enraged replica with an offset hole. Experiments were conducted at realistic operating conditions comprising an injection pressure of 100 bar and ambient pressures in the range of 0.1?6.0 bar to cover the entire range of chamber pressures prevailing in Gasoline Direct Injection engines. The action of viscoelastic additives was verified to have a suppressive effect on in-nozzle cavitation (6% reduction in cavitation extent) , while also enhancing spray atomisation at flash-boing conditions, in a manner resembling the more volatile gasoline/ethanol blends. Finally, persisting liquid ligaments were found to form after the end of injection for the additised sample, owing to the surfactant nature of the additives.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 71010608 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH