Thermoelectric devices convert thermal energy to electrical energy and are particularly well-suited for energy harvesting from waste heat. Even as the number of electronic devices used in daily life proliferates, technical advances diminish the average power such devices require to perform a given function. Here, localized thermal gradients that abound in our living environments, despite having modest energy densities, are therefore becoming increasingly viable and attractive to power such devices. With this motivation, we report the design, fabrication, and characterization of single-wall carbon nanotube thermoelectric devices (CNT-TDs) on flexible polyimide substrates as a basis for wearable energy converters. Our aqueous-solution-based film fabrication process could enable readily scalable, low-cost TDs
here, we demonstrate CNT-hydroxypropyl cellulose (HPC) composite thermoelectric films by aerosol jet printing. The electrical conductivity of the composite films is controlled through the number of CNT/HPC layers printed in combination with control of the annealing conditions.